Abstract

The detection and classification of power quality (PQ) disturbances have become a pressing concern due to the increasing number of disturbing loads connected to the power line and the susceptibility of certain loads to the presence of these disturbances; moreover, they can appear simultaneously since, in any real power system, there are multiple sources of different disturbances. In this paper, a new dual neural-network-based methodology to detect and classify single and combined PQ disturbances is proposed, consisting, on the one hand, of an adaptive linear network for harmonic and interharmonic estimation that allows computing the root-mean-square voltage and total harmonic distortion indices. With these indices, it is possible to detect and classify sags, swells, outages, and harmonics-interharmonics. On the other hand, a feedforward neural network for pattern recognition using the horizontal and vertical histograms of a specific voltage waveform can classify spikes, notching, flicker, and oscillatory transients. The combination of the aforementioned neural networks allows the detection and classification of all the aforementioned disturbances even when they appear simultaneously. An experiment under real operating conditions is carried out in order to test the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.