Abstract
SummaryElectrocardiograms (ECGs) are widely used to clinically detect cardiac arrhythmias (CAs). They are also being used to develop computer-assisted methods for heart disease diagnosis. We have developed a convolution neural network model to detect and classify CAs, using a large 12-lead ECG dataset (6,877 recordings) provided by the China Physiological Signal Challenge (CPSC) 2018. Our model, which was ranked first in the challenge competition, achieved a median overall F1-score of 0.84 for the nine-type CA classification of CPSC2018's hidden test set of 2,954 ECG recordings. Further analysis showed that concurrent CAs were adequately predictive for 476 patients with multiple types of CA diagnoses in the dataset. Using only single-lead data yielded a performance that was only slightly worse than using the full 12-lead data, with leads aVR and V1 being the most prominent. We extensively consider these results in the context of their agreement with and relevance to clinical observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.