Abstract

The problem of detection and classification of buried dielectric anomalies using a separated aperture microwave sensor and an artificial neural network discriminator was considered. Several methods for training and data representation were developed to study the trainability and generalization capabilities of the networks. The effect of the architectural variation on the network performance was also studied. The principal component method was used to reduce the volume of the data and also the dimension of the weight space. Simulation results on two types of targets were obtained which indicated superior detection and classification performance when compared with the conventional methods.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.