Abstract
Arteries play a critical role by carrying oxygen and essential nutrients throughout the body. However, trauma to the head and neck, as well as surgical interventions, can overstretch arteries and alter their mechanics. In order to better understand the cause of these changes, we employ a novel collagen hybridizing peptide (CHP) to study collagen damage in overstretched arteries. Our approach is unique in that we go beyond the fiber- and fibril-level and characterize molecular-level disruption. In addition, we image and quantify fluorescently-labeled CHP to reveal a new structure-property relationship in arterial damage. We anticipate that our approach can be used to better understand arterial damage in clinically relevant settings such as angioplasty and vascular trauma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.