Abstract
Synaptic plasticity such as long-term depression (LTD) has been regarded as a cellular mechanism of learning and memory. LTD is expressed by the decrease in number of postsynaptic AMPA-type receptor (AMPAR) at glutamatergic synapses. Although endocytosis is known to play an essential role in the decrease in AMPAR on postsynaptic membrane, the difficulty to detect individual endocytic events hampered clarification of AMPAR dynamics around synapses. Previously, we developed a method to induce formation of postsynaptic-like membrane (PSLM) on the glass surface and observed pHluorin-tagged AMPAR around PSLM with total internal reflection fluorescence microscopy. By this method, individual exocytosis of AMPAR-pHluorin was recorded in both PSLM and non-PSLM. In other studies, endocytic vesicles containing pHluorin-tagged receptors were visualized by changing extracellular pH. Here, we have combined PSLM formation method and rapid pH change method, and detected individual endocytic events of AMPAR around PSLM with high spatial and temporal resolutions. Endocytic events of AMPAR were characterized by comparison with those of transferrin receptor. Constitutive endocytosis of AMPAR was not dependent on clathrin and dynamin in contrast to that of transferrin receptor. However, AMPAR endocytosis triggered by LTD-inducing stimulation was clathrin- and dynamin-dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.