Abstract

In Norway, resistivity measurements have already been tested in marine environments in order to detect subsea fracture zones. However, most of these data have been processed without taking into account the special conditions the presence of seawater creates. More recent studies worldwide have also applied ERT in marine conditions, but under more favorable conditions nevertheless since they dealt with brackish water of considerably higher resistivity than pure seawater. This study summarizes our efforts to establish basic rules when considering whether or not pure sea water ERT can satisfactorily detect weak zones inside resistive bedrock, a problem engineers in Norway usually come up against in tunnel construction sites. The scope for this study is related to the construction of a sub-sea tunnels and the potential application of ERT to detect fractured zones as part of the geotechnical study. Our results indicate that ERT surveys for fracture zone detection in Norwegian marine environments can be promising under certain conditions but at the same time ambiguous since they suffer from reduced resolution and major artificial effects. Based on the modeling results, we were able to improve interpretations of ERT measurements made across the straits at Kvitsoy and plan further investigations in southern Norway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.