Abstract

BackgroundLates calcarifer, known as seabass in Asia and barramundi in Australia, is a widely farmed species internationally and in Southeast Asia and any disease outbreak will have a great economic impact on the aquaculture industry. Through disease investigation of Asian seabass from a coastal fish farm in 2015 in Singapore, a novel birnavirus named Lates calcarifer Birnavirus (LCBV) was detected and we sought to isolate and characterize the virus through molecular and biochemical methods.MethodsIn order to propagate the novel birnavirus LCBV, the virus was inoculated into the Bluegill Fry (BF-2) cell line and similar clinical signs of disease were reproduced in an experimental fish challenge study using the virus isolate. Virus morphology was visualized using transmission electron microscopy (TEM). Biochemical analysis using chloroform and 5-Bromo-2′-deoxyuridine (BUDR) sensitivity assays were employed to characterize the virus. Next-Generation Sequencing (NGS) was also used to obtain the virus genome for genetic and phylogenetic analyses.ResultsThe LCBV-infected BF-2 cell line showed cytopathic effects such as rounding and granulation of cells, localized cell death and detachment of cells observed at 3 to 5 days’ post-infection. The propagated virus, when injected intra-peritoneally into naïve Asian seabass under experimental conditions, induced lesions similar to fish naturally infected with LCBV. Morphology of LCBV, visualized under TEM, revealed icosahedral particles around 50 nm in diameter. Chloroform and BUDR sensitivity assays confirmed the virus to be a non-enveloped RNA virus. Further genome analysis using NGS identified the virus to be a birnavirus with two genome segments. Phylogenetic analyses revealed that LCBV is more closely related to the Blosnavirus genus than to the Aquabirnavirus genus within the Birnaviridae family.ConclusionsThese findings revealed the presence of a novel birnavirus that could be linked to the disease observed in the Asian seabass from the coastal fish farms in Singapore. This calls for more studies on disease transmission and enhanced surveillance programs to be carried out to understand pathogenicity and epidemiology of this novel virus. The gene sequences data obtained from the study can also pave way to the development of PCR-based diagnostic test methods that will enable quick and specific identification of the virus in future disease investigations.

Highlights

  • Lates calcarifer, known as seabass in Asia and barramundi in Australia, is a widely farmed species internationally and in Southeast Asia and any disease outbreak will have a great economic impact on the aquaculture industry

  • Lates calcarifer, known as seabass in Asia and barramundi in Australia, is a member of the family Centropomidae that is widely farmed in Southeast Asia, including Singapore [1]

  • Since its first detection in early 2015, the birnavirus has been detected and isolated from diseased Asian seabass till. These findings provide critical information about the presence of a novel birnavirus that could be linked to disease observed in the Asian seabass from the coastal fish farm

Read more

Summary

Introduction

Known as seabass in Asia and barramundi in Australia, is a widely farmed species internationally and in Southeast Asia and any disease outbreak will have a great economic impact on the aquaculture industry. Through disease investigation of Asian seabass from a coastal fish farm in 2015 in Singapore, a novel birnavirus named Lates calcarifer Birnavirus (LCBV) was detected and we sought to isolate and characterize the virus through molecular and biochemical methods. Asian seabass are ideal candidates for aquaculture due to their wide physiological tolerances and rapid growth. In early 2015, periodic episodes of mortality occurred in a coastal Asian seabass farm in Singapore. Diseased seabass from this farm were submitted to the Animal Health Laboratory, Agri-Food & Veterinary Authority of Singapore (AVA) as part of disease investigation. A viral agent was suspected to be involved in the disease outbreak

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call