Abstract

There is growing evidence that population-level brain activity is often organized into propagating waves that are structured in both space and time. Such spatiotemporal patterns have been linked to brain function and observed across multiple recording methodologies and scales. The ability to detect and analyze these patterns is thus essential for understanding the working mechanisms of neural circuits. Here we present a mathematical and computational framework for the identification and analysis of multiple classes of wave patterns in neural population-level recordings. By drawing a conceptual link between spatiotemporal patterns found in the brain and coherent structures such as vortices found in turbulent flows, we introduce velocity vector fields to characterize neural population activity. These vector fields are calculated for both phase and amplitude of oscillatory neural signals by adapting optical flow estimation methods from the field of computer vision. Based on these velocity vector fields, we then introduce order parameters and critical point analysis to detect and characterize a diverse range of propagating wave patterns, including planar waves, sources, sinks, spiral waves, and saddle patterns. We also introduce a novel vector field decomposition method that extracts the dominant spatiotemporal structures in a recording. This enables neural data to be represented by the activity of a small number of independent spatiotemporal modes, providing an alternative to existing dimensionality reduction techniques which separate space and time components. We demonstrate the capabilities of the framework and toolbox with simulated data, local field potentials from marmoset visual cortex and optical voltage recordings from whole mouse cortex, and we show that pattern dynamics are non-random and are modulated by the presence of visual stimuli. These methods are implemented in a MATLAB toolbox, which is freely available under an open-source licensing agreement.

Highlights

  • Recent advances in brain recording techniques have led to a rapid influx of high spatial- and temporal-resolution datasets of large neural populations [1,2,3,4]

  • Spatiotemporal patterns in brain activity emerge from molecules that behave irregularly

  • We demonstrate that these methods can be used to uncover the essential spatiotemporal properties of neural population activity recorded by different modalities, offering new insights into understanding the working mechanisms of neural systems

Read more

Summary

Introduction

Recent advances in brain recording techniques have led to a rapid influx of high spatial- and temporal-resolution datasets of large neural populations [1,2,3,4]. The phase and amplitude of traveling waves in the motor cortex and visual cortex correlate with reach target location [17] and with saccade size [18], respectively, and the propagation direction of moving patterns in the visual cortex is sensitive to visual movement orientation [28]. These studies indicate that the ability to detect and analyze these patterns is essential for uncovering the principled dynamics of neural population activity and for understanding the working mechanisms of neural circuits [15,26,29,30]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call