Abstract

A photothermal signal from a liquid sample in a capillary channel flow is detected and analyzed to optimize experimental conditions of microfluidic devices used for separation. A theoretical model for photoinduced temperature increase and photothermal signal intensity generated by intensity-modulated cw excitation beams at a crossed-beam configuration is proposed. Four experimental parameters (probe beam offset, excitation beam chopping frequency, linear flow velocity, and excitation beam size) and physical properties of solvent mainly dominate the signal. The model well explains the photothermal signal obtained experimentally under low velocity and high chopping frequency conditions. The obtained results make it possible to optimize the experimental conditions for the highly sensitive detection of chemicals under flow conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.