Abstract

DNA methylation levels at cytosine-phosphate-guanine (CpG) sites with multimodal distributions among different samples have been reported recently. One possible explanation for such variability is that genetic variants might affect epigenetic variation. One obvious case is that mutations such as single-nucleotide polymorphisms (SNPs) interrupt CpG sites, resulting in different DNA methylation levels for different genotypes. However, the relationship between genetic variations and epigenetic differences has not been studied thoroughly, partially because of the lack of powerful and robust methods to survey genome-wide CpG sites with multimodal methylation level distributions (mmCpGs). In this article, we develop a Gaussian mixture-model clustering (GMMC)–based approach to systematically detect all mmCpGs across the genome based on the GAW20 data set. In total, 3785 and 3847 mmCpGs have been identified in pre- and posttreatment data sets, respectively. Result analysis shows that approximately 68 to 70% of mmCpGs detected from unrelated individuals either have direct overlaps with SNPs or have associations with nearby SNPs, suggesting a strong correlation between SNPs and mmCpGs. Comparison with an existing approach illustrates that our GMMC-based method is more consistent when the number of samples decreases. In conclusion, mmCpGs may reveal important connections between genetics and epigenetics and they should be carefully identified and evaluated.

Highlights

  • DNA methylation is one of the most widely used epigenetic marks and plays an important role in gene regulations, which may result in phenotypic differences among different individuals, as well as phenotypic differences of the same individual, before and after treatments [1]

  • Epigenetics is traditionally defined as heritable changes in gene activities that do not involve genetic mutations, recent studies suggest associations exist between genetic variants and differences in DNA methylation levels [2, 3]

  • We examined single-nucleotide polymorphisms (SNPs) located within 50 kb on either side of each CpG site (100-kb window)

Read more

Summary

Introduction

DNA methylation is one of the most widely used epigenetic marks and plays an important role in gene regulations, which may result in phenotypic differences among different individuals, as well as phenotypic differences of the same individual, before and after treatments [1]. Epigenetics is traditionally defined as heritable changes in gene activities that do not involve genetic mutations, recent studies suggest associations exist between genetic variants and differences in DNA methylation levels [2, 3]. Large-scale genome-wide DNA methylation profiling (e.g., using Illumina Infinium Human Methylation450 Beadchip, aka Illumina 450 K), together with genome-wide genotyping assays using single-nucleotide polymorphism (SNP) arrays, enables studies of associations between genetic variations and differences in DNA methylation levels. Daca-Roszak et al [4] studied relationships between SNP genotypes and methylation levels of 96 CpG sites from European and Asian populations. They observed multimodal distributions among individual samples for CpG sites with SNPs

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call