Abstract
This paper explores the possibility of detecting certain movements of vehicles that might provide useful information for crime investigations. It is known that existing car following models are interested in microscopic interactions between vehicles in randomly formed pairs. The present work, however, introduces the concept of macroscopic analysis of vehicle positions on a network and the idea of seeking if these movements exhibit any meaningful relationships. First of all detection algorithms are produced for two possible types of detection: (a) was a particular vehicle followed by any vehicle? and (b) did a particular vehicle follow any vehicle? These algorithms assume that every link in the network is equipped with some sort of vehicle identification or tracking device and the identities of all vehicles, such as their number plates, are fed into the program. Then a simulation program is developed to implement the first algorithm (Type (a)), as an example, to visualise the concept. Since the present paper is a preliminary and basic approach to the problem, a number of issues and details requiring further research, together with the directions which could be taken, are also identified and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.