Abstract

This white paper explores the detectability of intermediate-mass black holes (IMBHs) wandering in the Milky Way (MW) and massive local galaxies, with a particular emphasis on the role of AXIS. IMBHs, ranging within 103−6M⊙, are commonly found at the centers of dwarf galaxies and may exist, yet undiscovered, in the MW. By using model spectra for advection-dominated accretion flows (ADAFs), we calculated the expected fluxes emitted by a population of wandering IMBHs with masses of 105M⊙ in various MW environments and extrapolated our results to massive local galaxies. Around 40% of the potential population of wandering IMBHs in the MW can be detected in an AXIS deep field. We proposed criteria to aid with selecting IMBH candidates using already available optical surveys. We also showed that IMBHs wandering in >200 galaxies within 10 Mpc can be easily detected with AXIS when passing within dense galactic environments (e.g., molecular clouds and cold neutral medium). In summary, we highlighted the potential X-ray detectability of wandering IMBHs in local galaxies and provided insights for guiding future surveys. Detecting wandering IMBHs is crucial for understanding their demographics and evolution and the merging history of galaxies. This white paper is part of a series commissioned for the AXIS Probe Concept Mission; additional AXIS white papers can be found at the AXIS website.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.