Abstract

In this paper we apply the diffusion framework to dense optical flow estimation. Local image information is represented by matrices of gradients between paired locations. Diffusion distances are modelled as sums of eigenvectors weighted by their eigenvalues extracted following the eigen decomposion of these matrices. Local optical flow is estimated by correlating diffusion distances characterizing features from different frames. A feature confidence factor is defined based on the local correlation efficiency when compared to that of its neighbourhood. High confidence optical flow estimates are propagated to areas of lower confidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.