Abstract
Light-matter interaction and understanding the fundamental physics behind is essential for emerging quantum technologies. Solid-state devices may explore new regimes where coupling strengths are “ultrastrong”, i.e., comparable to the energies of the subsystems. New exotic phenomena occur the common root of many of them being the fact that the entangled vacuum contains virtual photons. They herald the lack of conservation of the number of excitations which is the witness of ultrastrong coupling breaking the U(1) symmetry. Despite more than a decade of research, the detection of ground-state virtual photons still awaits demonstration. In this work, we recognize the “conspiring” set of experimental challenges show how to overcome them, thus providing a solution to this long-standing problem. We find that combining a superinductor-based unconventional “light fluxonium” qudit and coherent control yields a highly efficient, faithful, and selective conversion of virtual photons into real ones. This enables their detection with resources available to present-day quantum technologies. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.