Abstract

Digital holographic multiwavelength sensor systems integrated in the production line on multi-axis systems such as robots or machine tools are exposed to unknown, complex vibrations that affect the measurement quality. To detect vibrations during the early steps of hologram reconstruction, we propose a deep learning approach using a deep neural network trained to predict the standard deviation of the hologram phase. The neural network achieves 96.0% accuracy when confronted with training-like data while it achieves 97.3% accuracy when tested with data simulating a typical production environment. It performs similar to or even better than comparable classical machine learning algorithms. A single prediction of the neural network takes 35µs on the GPU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.