Abstract

The detection of long-chain branches (LCBs) is an issue of significant importance in both basic research and industrial applications, as LCBs provide excellent means to improve the processing behavior, especially in elongation-dominated processing operations. In this article, different methods for the detection of very low amounts of LCBs in metallocene-catalyzed polyethylene are presented and compared with respect to their sensitivity. Depending on the molar mass, the zero shear rate viscosity increase factor η 0/ $\eta_{0}^{\rm lin}$ , the steady-state elastic recovery compliance $J_{e}^{0}$ , the complex modulus functions G′(ω) and G″(ω), and the thermorheological complexity were found to be sensitive. In general, the higher the molar mass, the more important the transient quantities become and the easier finding the long-chain branches gets. Although rheology is very sensitive, rheological methods in combination with size exclusion chromatography proved to be the most sensitive combination to detect even very low amounts of LCBs. Especially methods involving the elastic properties (G′(ω), $J_{\rm e}^{0}$ , and J r(t)) react very sensitively, but these are also very distinctly influenced by the molar mass distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.