Abstract

BackgroundDiversity of immunoglobulins and the T cell antigen receptors is achieved via the recombination activating gene (RAG)-mediated rearrangement of variable (V), diversity (D) and joining (J) gene segments, and this underpins the efficient recognition of a seemingly limitless array of antigens. Analysis of V(D)J recombination activity is typically performed using extrachromosomal recombination substrates that are recovered from transfected cells and selected using bacterial transformation. We have developed a two-colour fluorescence-based system that simplifies detection of both deletion and inversion joining events mediated by RAG proteins.ResultsThis system employs two fluorescent reporter genes that differentially mark unrearranged substrates and those that have undergone RAG-mediated deletion or inversion events. The recombination products bear the hallmarks of true V(D)J recombination and activity can be detected using fluorescence microscopy or flow cytometry. Recombination events can be detected without the need for cytotoxic selection of recombination products and the system allows analysis of recombination activity using substrates integrated into the genome.ConclusionsThis system will be useful in the analysis and exploitation of the V(D)J recombination machinery and suggests that similar approaches could be used to replace expression of one gene with another during lymphocyte development.

Highlights

  • Diversity of immunoglobulins and the T cell antigen receptors is achieved via the recombination activating gene (RAG)-mediated rearrangement of variable (V), diversity (D) and joining (J) gene segments, and this underpins the efficient recognition of a seemingly limitless array of antigens

  • Variable (V), diversity (D) and joining (J) gene segments of antigen receptor loci are assembled into a functional coding unit by a series of site-specific recombination events mediated by the products of recombination activating gene (RAG)1 and RAG2 [1]

  • Double strand breaks introduced at the recombination signal sequences (RSS) motifs by the RAG proteins are resolved by non-homologous end joining

Read more

Summary

Introduction

Diversity of immunoglobulins and the T cell antigen receptors is achieved via the recombination activating gene (RAG)-mediated rearrangement of variable (V), diversity (D) and joining (J) gene segments, and this underpins the efficient recognition of a seemingly limitless array of antigens. Variable (V), diversity (D) and joining (J) gene segments of antigen receptor loci are assembled into a functional coding unit by a series of site-specific recombination events mediated by the products of recombination activating gene (RAG) and RAG2 [1]. Recombination is targeted to specific sites by the recombination signal sequences (RSS), which flank the gene segments. A signal joint in which the RSS motifs are joined and a coding joint (Figure 1) in which the gene segments are joined [2]

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.