Abstract

With increasing attention being paid to sustainable urban development and human habitation improvement, urban ecological land cover (UELC), i.e., surface water and green space, has played an important role of the highly compact inner urban regions. In this study, we developed an efficient approach for UELC mapping by coupling Sentinel-2 multi-spectral imagery and Google Earth high-resolution imagery. In contrast with the conventional single-source and multi-source imagery-based classification methods, the proposed method respectively achieved the highest overall accuracies of 91.50% and 94.05% in the UELC mapping for two test sites (i.e. Shanghai and Seoul). The proposed method is used for urban surface mapping among six world-class cities. For an in-depth analysis of the landscape structures for inner urban regions, seven landscape metrics are introduced for the quantification of the UELC structure based on the obtained high-precision UELC maps. The result shows that London appears to have the best UELC-induced ecological quality, that is, with high percentage of landscape, area-weighted mean fractal dimension, edge density, Shannon’s evenness index values and a low contagion index value, while Tokyo is exactly the opposite. Several common characteristics found through the statistical analysis are: 1) all the inner-city regions have small UELC coverage (< 50%) and low shape complexity; 2) green space generally contributes more to urban eco-environment than the urban surface water; and 3) all cities show high landscape consistency in the inner urban region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call