Abstract

Unknown threats have caused severe damage in critical infrastructures. To solve this issue, the graph-based methods have been proposed because of their ability for learning complex interaction patterns of network entities with discrete graph snapshots. However, such methods are challenged by the computer networking model characterized by the natural continuous-time dynamic heterogeneous graph (CDHG). In this paper, we propose a CDHG-based graph neural network model, namely, CDHGN, for unknown threat detection. It first constructs the CDHG using interaction relationships among network entities extracted from various log records. Then, it trains the detection model based on a heterogeneous attention network and performs streaming detection for live online network events. We implement a prototype and conduct extensive experiments on a comprehensive cybersecurity dataset with more than nine million records. Experimental result shows that the proposed method can achieve superior detection performance than the state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.