Abstract
Detection of human behavior in On-line Social Networks (OSNs) has become more and more important for a wide range of applications, such as security, marketing, parent controls and so on, opening a wide range of novel research areas, which have not been fully addressed yet. In this paper, we present a two-stage method for anomaly detection in humans' behavior while they are using a social network. First, we use Markov chains to automatically learn from the social network graph a number of models of human behaviors (normal behaviors), the second stage applies an activity detection framework based on the concept of possible words to detect all unexplained activities with respect to the normal behaviors. Some preliminary experiments using Facebook data show the approach efficiency and effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.