Abstract

In a recent paper (Ray and Hesthaven, 2018) [38], we proposed a new type of troubled-cell indicator to detect discontinuities in the numerical solutions of one-dimensional conservation laws. This was achieved by suitably training an artificial neural network on canonical local solution structures for conservation laws. The proposed indicator was independent of problem-dependent parameters, giving it an advantage over existing limiter-based indicators. In the present paper, we extend this approach to train a similar network capable of detecting troubled-cells on two-dimensional unstructured grids. The proposed network has a smaller architecture compared to its one-dimensional predecessor, making it computationally efficient. Several numerical results are presented to demonstrate the performance of the new indicator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.