Abstract
This research introduces an adaptive control algorithm designed to determine gait phase in real-time using an inertial measurement unit (IMU) affixed to the shank. Focusing on detecting specific gait events, primarily initial contact (IC) and toe-off (TO), the algorithm utilizes dynamic thresholds and ratios that facilitate accurate event determination adaptively across a range of walking speeds. Built-in safety checks further ensure precision and minimize false detections. We validated the algorithm with eight participants walking at varying speeds. The algorithm demonstrated promising results in detecting IC and TO events with mean lead of 8.95 ms and 4.42 ms and detection success rate of 100% and 99.72%, respectively. These results are consistent with benchmarks from established algorithms (Hanlon and Anderson, 2009, "Real-Time Gait Event Detection Using Wearable Sensors," Gait Posture, 30(4), pp. 523-527; Maqbool et al., 2017, "A Real-Time Gait Event Detection for Lower Limb Prosthesis Control and Evaluation," IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc., 25(9), pp. 1500-1509). Moreover, the algorithm's self-adaptive nature ensures it can be used in scenarios of varying movement, offering a promising solution for real-time gait phase detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.