Abstract

A pair of Majorana zero modes (MZMs) constitutes a nonlocal qubit whose entropy is log2. Upon strongly coupling one of the constituent MZMs to a reservoir with a continuous density of states, a universal entropy change of 1/2log2 is expected to be observed across an intermediate temperature plateau. We adapt the entropy-measurement scheme that was the basis of a recent experiment by Hartman etal. [Nat. Phys. 14, 1083 (2018)10.1038/s41567-018-0250-5] to the case of a proximitized topological system hosting MZMs and propose a method to measure this 1/2log2 entropy change-an unambiguous signature of the nonlocal nature of the topological state. This approach offers an experimental strategy to distinguish MZMs from non topological states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call