Abstract

The detection of stochastic gravitational wave background (SGWB) is among the leading scientific goals of the space-borne gravitational wave observatory, which would have significant impact on astrophysics and fundamental physics. In this work, we developed a data analysis software, \texttt{TQSGWB}, which can extract isotropic SGWB using the Bayes analysis method based on the TianQin detector. We find that for the noise cross spectrum, there are imaginary components and they play an important role in breaking the degeneracy of the position noise in the common laser link. When the imaginary corrections are considered, the credible regions of the position noise parameters are reduced by two orders of magnitude. We demonstrate that the parameters of various signals and instrumental noise could be estimated directly in the absence of a Galactic confusion foreground through Markov chain Monte Carlo sampling. With only a three-month observation, we find that TianQin could be able to confidently detect SGWBs with energy density as low as $\Omega_{\rm PL} = 1.3 \times 10^{-12}$, $\Omega_{\rm Flat} = 6.0 \times 10^{-12}$, and $\Omega_{\rm SP} = 9.0 \times 10^{-12}$, for power-law, flat, and single-peak models respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.