Abstract
We explore the potential of Pulsar Timing Arrays (PTAs) such as NANOGrav, EPTA, and PPTA to detect the Stochastic Gravitational Wave Background (SGWB) in theories of massive gravity. In General Relativity, the function describing the dependence of the correlation between the arrival times of signals from two pulsars on the angle between them is known as the Hellings-Downs curve. We compute the analogous overlap reduction function for massive gravity, including the additional polarization states and the correction due to the mass of the graviton, and compare the result with the Hellings-Downs curve. The primary result is a complete analytical form for the analog Hellings-Downs curve, providing a starting point for future numerical studies aimed at a detailed comparison between PTA data and the predictions of massive gravity. We study both the massless limit and the stationary limit as checks on our calculation, and discuss how our formalism also allows us to study the impact of massive spin-2 dark matter candidates on data from PTAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.