Abstract
Detecting the significant nodes in multilayer networks is crucial for preventing the large-scale spread of disaster events. However, the existing model can hardly simulate the ubiquitous non-failure cascading effect process in social and economic systems. To solve this problem, first, we propose a mathematical method of constructing a two-layer network model. Then we define the non-failure cascading effect process in the two-layer network. Based on the model and spreading process, we propose a non-failure cascading effect index by using each node’s non-failure cascading affecting in uential degree on the two-layer network. We then applied the detecting model in theoretical two-layer networks. We find there exist significant nodes, and also exist several in uential factors of the interlayer cascading effect process. The detecting model is applied in the two-layer industrial input-output networks between the U.S. and China for testing the validity of the theoretical model. The hybrid network combination is relatively more sensitive to in uential factors; the significant nodes are more prominent in scale-free networks. Our research provides a solution for finding the significant nodes in two-layer social or economic networks based on the non-failure cascading effect process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.