Abstract

Abstract. Thaw and release of permafrost carbon (C) due to climate change is likely to offset increased vegetation C uptake in northern high-latitude (NHL) terrestrial ecosystems. Models project that this permafrost C feedback may act as a slow leak, in which case detection and attribution of the feedback may be difficult. The formation of talik, a subsurface layer of perennially thawed soil, can accelerate permafrost degradation and soil respiration, ultimately shifting the C balance of permafrost-affected ecosystems from long-term C sinks to long-term C sources. It is imperative to understand and characterize mechanistic links between talik, permafrost thaw, and respiration of deep soil C to detect and quantify the permafrost C feedback. Here, we use the Community Land Model (CLM) version 4.5, a permafrost and biogeochemistry model, in comparison to long-term deep borehole data along North American and Siberian transects, to investigate thaw-driven C sources in NHL (> 55∘ N) from 2000 to 2300. Widespread talik at depth is projected across most of the NHL permafrost region (14 million km2) by 2300, 6.2 million km2 of which is projected to become a long-term C source, emitting 10 Pg C by 2100, 50 Pg C by 2200, and 120 Pg C by 2300, with few signs of slowing. Roughly half of the projected C source region is in predominantly warm sub-Arctic permafrost following talik onset. This region emits only 20 Pg C by 2300, but the CLM4.5 estimate may be biased low by not accounting for deep C in yedoma. Accelerated decomposition of deep soil C following talik onset shifts the ecosystem C balance away from surface dominant processes (photosynthesis and litter respiration), but sink-to-source transition dates are delayed by 20–200 years by high ecosystem productivity, such that talik peaks early (∼ 2050s, although borehole data suggest sooner) and C source transition peaks late (∼ 2150–2200). The remaining C source region in cold northern Arctic permafrost, which shifts to a net source early (late 21st century), emits 5 times more C (95 Pg C) by 2300, and prior to talik formation due to the high decomposition rates of shallow, young C in organic-rich soils coupled with low productivity. Our results provide important clues signaling imminent talik onset and C source transition, including (1) late cold-season (January–February) soil warming at depth (∼ 2 m), (2) increasing cold-season emissions (November–April), and (3) enhanced respiration of deep, old C in warm permafrost and young, shallow C in organic-rich cold permafrost soils. Our results suggest a mosaic of processes that govern carbon source-to-sink transitions at high latitudes and emphasize the urgency of monitoring soil thermal profiles, organic C age and content, cold-season CO2 emissions, and atmospheric 14CO2 as key indicators of the permafrost C feedback.

Highlights

  • The future trajectory of the Arctic Boreal Zone (ABZ) as a carbon (C) sink or source is of global importance due to vast quantities of C in permafrost and frozen soils (Belshe, Schuur and Bolker, 2013)

  • The remaining C source region in cold northern Arctic permafrost, which shifts to a net source early, emits 5 times more C (95 Pg C) by 2300, and prior to talik formation due to the high decomposition rates of shallow, young C in organic-rich soils coupled with low productivity

  • Expert assessments of site-level observations, inversion studies, and process models suggest that Arctic C balance is near neutral, but large uncertainties allow for solutions ranging from small sources to moderate sinks; most assessments favor an overall strengthening of the regional C sink, with productivity gains exceeding respiration losses on average (McGuire et al, 2012)

Read more

Summary

Introduction

The future trajectory of the Arctic Boreal Zone (ABZ) as a carbon (C) sink or source is of global importance due to vast quantities of C in permafrost and frozen soils (Belshe, Schuur and Bolker, 2013). The effect of continued warming on future northern highlatitude (NHL) ecosystem C balance is uncertain but appears to be increasingly dependent on responses to changes in coldseason emissions, soil moisture, shifts in vegetation community, and permafrost degradation (Abbott et al, 2016). These vulnerabilities are likely driven by disproportionate warming during the cold season (Fraser et al, 2014), which is projected to increase at twice the rate of summer warming over the century (Christensen et al, 2013). ABZ fire-driven C losses are expected to increase 4-fold by 2100 (Abbott et al, 2016)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.