Abstract

Although the water oxidation cycle involves the critical step of O-O bond formation, the transition metal oxide radical thought to be the catalytic intermediate for this step has eluded direct observation. The radical represents the transformation of charge into a nascent catalytic intermediate, which lacks a newly formed bond and is therefore inherently difficult to detect. Here, using theoretical calculations and ultrafast in situ infrared spectroscopy of photocatalysis at an n-SrTiO3/aqueous interface, we reveal a subsurface vibration of the oxygen directly below, and uniquely generated by, the oxyl radical (Ti-O(•)). Intriguingly, this interfacial Ti-O stretch vibration, once decoupled from the lattice, couples to reactant dynamics (water librations). These experiments demonstrate subsurface vibrations and their coupling to solvent and electron dynamics to detect nascent catalytic intermediates at the solid-liquid interface at the molecular level. One can envision using the subsurface vibrations and their coupling across the interface to track and control catalysis dynamically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.