Abstract

With the rapid advancement of phasor measurement units (PMUs) technology, system operators in different level of power systems have access to new and abundant measurements. Taking into account these measurements in active distribution systems (ADNs), a new algorithm for short-circuit fault detection and identification based on state estimation (SE) is introduced in this paper. In this regard, as the first step, traditional SE process is revised to be compatible with fault conditions. Then, a fault location algorithm (FLA) based on the revised SE (RDSSE) is presented which attends to detect the location of fault after diagnosing faulted zone. For this purpose, current and voltage synchrophasors captured by PMUs as well as pre-fault SE results are used and according to calculated measurement residual indexes, the correct location of fault is diagnosed. The performance of RDSSE and SE based fault location method are tested by applying on an ADN, considering different fault scenarios in the network. The results proved that the proposed method is more accurate and reliable than traditional SE based methods in fault conditions and can precisely determine the real location of fault at lower SE execution times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.