Abstract

Genome scans are increasingly used to study ecological speciation, providing a useful genome-wide perspective on divergent selection in the presence of gene flow. Here, we compare current approaches to detect footprints of divergent selection in closely related species. We analyzed 192 individuals from two interfertile European temperate oak species using 30 nuclear microsatellites from eight linkage groups. These markers present little intraspecific differentiation and can be used in combination to assign individual genotypes to species. We first show that different outlier detection tests give somewhat different results, possibly due to model constraints. Second, using linkage information for these markers, we further characterize the signature of divergent selection in the presence of gene flow. In particular, we show that recombination estimates for regions with outlier markers are lower than those for a control region, in line with a prediction from ecological speciation theory. Most importantly, we show that analyses at the haplotype level can distinguish between truly divergent (bi-directional) selection and positive selection in one of the two species, offering a new and improved method for characterizing the speciation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.