Abstract

An increased understanding of the responses of forest phenology to climate on regional scales is critical to the evaluation of biochemical cycles (i.e. carbon, water, heat, and nutrient) under environmental changes. In this study, we aimed to identify climatic constraints on phenological events in an evergreen coniferous forest in semi-arid mountain regions of northern China. We quantified the start of season (SOS), end of season (EOS), and growing season length (GSL) based on satellite-derived data sets (normalized difference vegetation index (NDVI)) and investigated the relationships between these phenological events and climate factors. The results revealed discontinuous trends in phenological events throughout the study period, with neither an obvious extension nor decrement in GSL. We demonstrated that minimum temperatures controlled the dynamics of SOS and EOS, thus providing strong evidence for the need to include minimum temperature as a control on phenology in simulation models. Additionally, precipitation was coupled to the shift in maximum NDVI, as rainfall is a major climatic limitation to vegetation growth in semi-arid regions. It appears that selecting appropriate timescales to analyse the relationships between phenology and climate is critical. We illustrated that NDVI was an effective tool in an effort to gain greater understanding of the effects of environmental change on ecosystem functioning in this forest. Our results may be used as reference to track local changes in the evergreen coniferous forest dynamics under different climate change scenarios for semi-arid mountain regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call