Abstract

The search of chiral magnetic effect (CME) in heavy-ion collisions has attracted long-term attentions. Multiple observables have been proposed but all suffer from obstacles due to large background contaminations. In this Letter, we construct an observable-independent CME-meter based on a deep convolutional neural network. After trained over data set generated by a multiphase transport model, the CME-meter shows high accuracy in recognizing the CME-featured charge separation from the final-state pion spectra. It also exhibits remarkable robustness to diverse conditions including different collision energies, centralities, and elliptic flow backgrounds. In a transfer learning manner, the CME-meter is validated in isobaric collision systems, showing good transferability among different colliding systems. Based on variational approaches, we utilize the DeepDream method to derive the most responsive CME-spectra that demonstrates the physical contents the machine learns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call