Abstract
AbstractFinite‐time coherent sets (FTCSs) are distinguished regions of phase space that resist mixing with the surrounding space for some finite period of time; physical manifestations include eddies and vortices in the ocean and atmosphere, respectively. The boundaries of FTCSs are examples of Lagrangian coherent structures (LCSs). The selection of the time duration over which FTCS and LCS computations are made in practice is crucial to their success. If this time is longer than the lifetime of coherence of individual objects then existing methods will fail to detect the shorter‐lived coherence. It is of clear practical interest to determine the full lifetime of coherent objects, but in complicated practical situations, for example a field of ocean eddies with varying lifetimes, this is impossible with existing approaches. Moreover, determining the timing of emergence and destruction of coherent sets is of significant scientific interest. In this work we introduce new constructions to address these issues. The key components are an inflated dynamic Laplace operator and the concept of semi‐material FTCSs. We make strong mathematical connections between the inflated dynamic Laplacian and the standard dynamic Laplacian, showing that the latter arises as a limit of the former. The spectrum and eigenfunctions of the inflated dynamic Laplacian directly provide information on the number, lifetimes, and evolution of coherent sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.