Abstract

A growing body of experimental work suggests that magic angle twisted bilayer graphene exhibits a "cascade" of spontaneous symmetry-breaking transitions, sparking interest in the potential relationship between symmetry breaking and superconductivity. However, it has proven difficult to find experimental probes which can unambiguously identify the nature of the symmetry breaking. Here, we show how atomically resolved scanning tunneling microscopy can be used as a fingerprint of symmetry-breaking order. By analyzing the pattern of sublattice polarization and "Kekulé" distortions in small magnetic fields, order parameters for each of the most competitive symmetry-breaking states can be identified. In particular, we show that the "Kramers intervalley coherent state," which theoretical work predicts to be the ground state at even integer fillings, shows a Kekulé distortion which emerges only in a magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.