Abstract

Security is becoming a major concern for many mission-critical applications wireless sensor networks (WSNs) are envisaged to support. The inherently vulnerable characteristics of WSNs appoint them susceptible to various types of attacks. This work restrains its focus on how to defend against a particularly harmful form of attack, the Sybil attack. Sybil attacks can severely deteriorate the network performance and compromise the security by disrupting many networking protocols. This paper presents a rule-based anomaly detection system, called RADS, which monitors and timely detects Sybil attacks in large-scale WSNs. At its core, the proposed expert system relies on an ultra-wideband (UWB) ranging-based detection algorithm that operates in a distributed manner requiring no cooperation or information sharing between the sensor nodes in order to perform the anomaly detection tasks. The feasibility of the proposed approach is proven analytically, while the performance of RADS in exposing Sybil attacks is extensively assessed both mathematically and numerically. The obtained results demonstrate that RADS achieves high detection accuracy and low false alarm rate appointing it a promising ADS candidate for this class of wireless networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.