Abstract

The PLANCK-mission is the most sensitive all-sky submillimetric mission currently being planned and prepared. Special emphasis is given to the observation of clusters of galaxies by their thermal Sunyaev-Zel'dovich (SZ) effect. In this work, the results of a simulation are presented that combines all-sky maps of the thermal and kinetic SZ-effect with cosmic microwave background (CMB) fluctuations, Galactic foregrounds (synchrotron emission, thermal emission from dust, free-free emission and rotational transitions of carbon monoxide molecules) and sub-millimetric emission from planets and asteroids of the Solar System. Observational issues, such as PLANCKs beam shapes, frequency response and spatially non-uniform instrumental noise have been incorporated. Matched and scale-adaptive multi-frequency filtering schemes have been extended to spherical coordinates and are now applied to the data sets in order to isolate and amplify the weak thermal SZ-signal. The properties of the resulting SZ-cluster sample are characterised in detail: Apart from the number of clusters as a function of cluster parameters such as redshift z and total mass M, the distribution n(sigma)d sigma of the detection significance sigma, the number of detectable clusters in relation to the model cluster parameters entering the filter construction, the position accuracy of an SZ-detection and the cluster number density as a function of ecliptic latitude beta is examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call