Abstract
Detecting a structural anomaly, such as a damaged propeller or motor, is crucial for mission-critical operation of unmanned aerial vehicles (UAVs). The existing solutions often fail to detect structural anomalies because the pre-defined parameters required for the solution are limited in reflecting the flight pattern or the external environment, such as wind conditions. In this paper, we propose a method for detecting structural anomalies in quadcopter UAVs, using only regular data and specifically considering flight patterns and runtime flight conditions. To this end, we employ a long short-term memory (LSTM) autoencoder model to learn complex features of regular flight data. While flying the UAV, the trained model estimates the degree of outlierness of the incoming data and assesses abnormal behavior of UAV by adaptively considering its movement. This way, the proposed method accurately detects structural anomalies in UAVs regardless of the runtime environment or flight mission. Our experiment results with an off-the-shelf UAV show that the proposed approach detects diverse structural anomalies by an average of 98.6% specificity and 90.3% sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.