Abstract

Space-based instruments provide new and, in some cases, unique opportunities to search for dark matter. In particular, if dark matter comprises sterile neutrinos, the X-ray detection of their decay line is the most promising strategy for discovery. Sterile neutrinos with masses in the keV range could solve several long-standing astrophysical puzzles, from supernova asymmetries and the pulsar kicks to star formation, reionization, and baryogenesis. The best current limits on sterile neutrinos come from Chandra and XMM-Newton. Future advances can be achieved with a high-resolution X-ray spectrometry in space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.