Abstract

Stable massive neutral particles emitted by astrophysical sources undergo deflection under the gravitational potential of our own galaxy. The deflection angle depends on the particle velocity and therefore non-relativistic particles will be deflected more than relativistic ones. If these particles can be detected through neutrino telescopes, cosmic ray detectors or directional dark matter detectors, their arrival directions would appear aligned on the sky along the source-lens direction. On top of this deflection, the arrival direction of non-relativistic particles is displaced with respect to the relativistic counterpart also due to the relative motion of the source with respect to the observer; this induces an alignment of detections along the sky projection of the source trajectory. The final alignment will be given by a combination of the directions induced by lensing and source proper motion. We derive the deflection-velocity relation for the Milky Way halo and suggest that searching for alignments on detection maps of particle telescopes could be a way to find new particles or new astrophysical phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call