Abstract
Now a day’s human relations are maintained by social media networks. Traditional relationships now days are obsolete. To maintain in association, sharing ideas, exchange knowledge between we use social media networking sites. Social media networking sites like Twitter, Facebook, LinkedIn etc are available in the communication environment. Through Twitter media users share their opinions, interests, knowledge to others by messages. At the same time some of the user’s misguide the genuine users. These genuine users are also called solicited users and the users who misguidance are called spammers. These spammers post unwanted information to the non spam users. The non spammers may retweet them to others and they follow the spammers. To avoid this spam messages we propose a methodology by us using machine learning algorithms. To develop our approach used a set of content based features. In spam detection model we used Support vector machine algorithm(SVM) and Naive bayes classification algorithm. To measure the performance of our model we used precision, recall and F measure metrics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.