Abstract
This study investigated ultrashort echo time (UTE) sequences in 1.5T magnetic resonance imaging (MRI) for small lung nodule detection. A total of 120 patients with 165 small lung nodules before video-associated thoracoscopic resection were enrolled. MRI sequences included conventional volumetric interpolated breath-hold examination (VIBE, scan time 16s), spiral UTE (TE 0.05ms) with free-breathing (scan time 3.5-5min), and breath-hold sequences (scan time 20s). Chest CT provided a standard reference for nodule size and morphology. Nodule detection sensitivity was evaluated on a lobe-by-lobe basis. The nodule detection rate was significantly higher in spiral UTE free-breathing (> 78%, p < 0.05) and breath-hold sequences (> 75%, p < 0.05) compared with conventional VIBE (> 55%), reaching 100% when nodule size was > 16mm, and reaching 95% when nodules were in solid morphology, regardless of size. The inter-sequence reliability between free-breathing and breath-hold spiral UTE was good (κ > 0.80). Inter-reader agreement was also high (κ > 0.77) for spiral UTE sequences. Nodule size measurements were consistent between CT and spiral UTE MRI, with a minimal bias up to 0.2mm. Spiral UTE sequences detect small lung nodules that warrant surgery, offers realistic scan times for clinical work, and could be implemented as part of routine lung MRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Magnetic Resonance Materials in Physics, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.