Abstract

Amplification-free genome analysis can revolutionize biology and medicine by uncovering genetic variations among individuals. Here, the authors report on a 3D-integrated nanopore for electrolysis to in situ detection of single-molecule DNA in a cell by ionic current measurements. It consists of a SiO2 multipore sheet and a SiNx nanopore membrane stacked vertically on a Si wafer. Single cell lysis is demonstrated by 106 Vm-1 -level electrostatic field focused at the multinanopore. The intracellular molecules are then directly detected as they move through a sensing zone, wherein the authors find telegraphic current signatures reflecting folding degrees of freedom of the millimeter-long polynucleotides threaded through the SiNx nanopore. The present device concept may enable on-chip single-molecule sequencing to multi-omics analyses at a single-cell level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call