Abstract
Social media, an undeniable facet of the modern era, has become a primary pathway for disseminating information. Unverified and potentially harmful rumors can have detrimental effects on both society and individuals. Owing to the plethora of content generated, it is essential to assess its alignment with factual accuracy and determine its veracity. Previous research has explored various approaches, including feature engineering and deep learning techniques, that leverage propagation theory to identify rumors. In our study, we place significant importance on examining the emotional and sentimental aspects of tweets using deep learning approaches to improve our ability to detect rumors. Leveraging the findings from the previous analysis, we propose a Sentiment and EMotion driven TransformEr Classifier method (SEMTEC). Unlike the existing studies, our method leverages the extraction of emotion and sentiment tags alongside the assimilation of the content-based information from the textual modality, i.e., the main tweet. This meticulous semantic analysis allows us to measure the user's emotional state, leading to an impressive accuracy rate of 92% for rumor detection on the "PHEME" dataset. The validation is carried out on a novel dataset named "Twitter24". Furthermore, SEMTEC exceeds standard methods accuracy by around 2% on "Twitter24" dataset.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.