Abstract

To develop and assess the accuracy of deep learning models that identify different retinal cell types, as well as different retinal ganglion cell (RGC) subtypes, based on patterns of single-cell RNA sequencing (scRNA-seq) in multiple datasets. Deep domain adaptation models were developed and tested using three different datasets. The first dataset included 44 808 single retinal cells from mice (39 cell types) with 24 658 genes, the second dataset included 6225 single RGCs from mice (41 subtypes) with 13 616 genes and the third dataset included 35 699 single RGCs from mice (45 subtypes) with 18 222 genes. We used four loss functions in the learning process to align the source and target distributions, reduce misclassification errors and maximize robustness. Models were evaluated based on classification accuracy and confusion matrix. The accuracy of the model for correctly classifying 39 different retinal cell types in the first dataset was ∼92%. Accuracy in the second and third datasets reached ∼97% and 97% in correctly classifying 40 and 45 different RGCs subtypes, respectively. Across a range of seven different batches in the first dataset, the accuracy of the lead model ranged from 74% to nearly 100%. The lead model provided high accuracy in identifying retinal cell types and RGC subtypes based on scRNA-seq data. The performance was reasonable based on data from different batches as well. The validated model could be readily applied to scRNA-seq data to identify different retinal cell types and subtypes. The code and datasets are available on https://github.com/DM2LL/Detecting-Retinal-Cell-Classes-and-Ganglion-Cell-Subtypes. We have also added the class labels of all samples to the datasets. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.