Abstract
Past fund performance does a poor job of predicting future outcomes. The reason is noise. Using a random effects framework, we reduce the noise by pooling information from the cross-sectional alpha distribution to make density forecasts for each individual fund’s alpha. In simulations, we show that our method generates parameter estimates that outperform alternative methods, both at the population and at the individual fund level. An out-of-sample forecasting exercise also shows that our method generates improved alpha forecasts. Received November 23, 2016; editorial decision November 1, 2017 by Editor Andrew Karolyi. Authors have furnished an Internet Appendix, which is available on the Oxford University Press Web Site next to the link to the final published paper online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.