Abstract
Refactoring is a well-established topic in contemporary software engineering, focusing on enhancing software's structural design without altering its external behavior. Commit messages play a vital role in tracking changes to the codebase. However, determining the exact refactoring required in the code can be challenging due to various refactoring types. Prior studies have attempted to classify refactoring documentation by type, achieving acceptable results in accuracy, precision, recall, F1-Score, and other performance metrics. Nevertheless, there is room for improvement. To address this, we propose a novel approach using four ensemble Machine Learning algorithms to detect refactoring types. Our experimentation utilized a dataset containing 573 commits, with text cleaning and preprocessing applied to address data imbalances. Various techniques, including hyperparameter optimization, feature engineering with TF-IDF and bag-of-words, and binary transformation using one-vs-one and one-vs-rest classifiers, were employed to enhance accuracy. Results indicate that the experiment involving feature engineering using the TF-IDF technique outperformed other methods. Notably, the XGBoost algorithm with the same technique achieved superior performance across all metrics, attaining 100% accuracy. Moreover, our results surpass the current state-of-the-art performance using the same dataset. Our proposed approach bears significant implications for software engineering, particularly in enhancing the internal quality of software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.