Abstract

Here we describe a new type of biosensor element for detecting proteins in solution at nanomolar concentrations. We tethered a 3.4 kDa polyethylene glycol chain at a defined site within the lumen of the transmembrane protein pore formed by staphylococcal alpha-hemolysin. The free end of the polymer was covalently attached to a biotin molecule. On incorporation of the modified pore into a lipid bilayer, the biotinyl group moves from one side of the membrane to the other, and is detected by reversible capture with a mutant streptavidin. The capture events are observed as changes in ionic current passing through single pores in planar bilayers. Accordingly, the modified pore allows detection of a protein analyte at the single-molecule level, facilitating both quantification and identification through a distinctive current signature. The approach has higher time resolution compared with other kinetic measurements, such as those obtained by surface plasmon resonance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call