Abstract

Vibrio vulnificus is a leading cause of seafood-related deaths in the United States. Sequence variations in the virulence-correlated gene (vcg) have been used to distinguish between clinical and environmental V. vulnificus strains, with a strong association between clinical ones and the C sequence variant (vcgC). In this study, vcgC was selected as the target to design a loop-mediated isothermal amplification (LAMP) assay for the rapid, sensitive, specific, and quantitative detection of potentially virulent V. vulnificus strains in raw oysters. No false-positive or false-negative results were generated among the 125 bacterial strains used to evaluate assay specificity. The detection limit was 5.4 CFU per reaction for a virulent V. vulnificus strain (ATCC 33815) in pure culture, 100-fold more sensitive than that of PCR. In spiked raw oysters, the assay was capable of detecting 2.5 × 10(3) CFU/g of V. vulnificus ATCC 33815, while showing negative results for a nonvirulent V. vulnificus strain (515-4c2) spiked at 10(7) CFU/g. After 6 h of enrichment, the LAMP assay could detect 1 CFU/g of the virulent V. vulnificus strain ATCC 33815. Standard curves generated in pure culture and spiked oysters suggested a good linear relationship between cell numbers of the virulent V. vulnificus strain and turbidity signals. In conclusion, the LAMP assay developed in this study could quantitatively detect potentially virulent V. vulnificus in raw oysters with high speed, specificity, and sensitivity, which may facilitate better control of V. vulnificus risks associated with raw oyster consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call