Abstract
In the era of Internet of Things (IoT), impact of social media is increasing gradually. With the huge progress in the IoT device, insider threat is becoming much more dangerous. Trying to find what kind of people are in high risk for the organization, about one million of tweets were analyzed by sentiment analysis methodology. Dataset made by the web service “Sentiment140” was used to find possible malicious insider. Based on the analysis of the sentiment level, users with negative sentiments were classified by the criteria and then selected as possible malicious insiders according to the threat level. Machine learning algorithms in the open-sourced machine learning software “Weka (Waikato Environment for Knowledge Analysis)” were used to find the possible malicious insider. Decision Tree had the highest accuracy among supervised learning algorithms and K-Means had the highest accuracy among unsupervised learning. In addition, we extract the frequently used words from the topic modeling technique and then verified the analysis results by matching them to the information security compliance elements. These findings can contribute to achieve higher detection accuracy by combining individual’s characteristics to the previous studies such as analyzing system behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.