Abstract

This study addresses the critical need for regional tourism integration and sustainable development by identifying cooperation opportunities among tourist attractions within a region. We introduce a novel methodology that combines association rule mining with complex network analysis and utilizes search index data as a dynamic and contemporary data source to reveal cooperative patterns among tourist attractions. Our approach delineates a potential cooperative network within the destination ecosystem, categorizing tourist attractions into three distinct communities: core, intermediary, and periphery. These communities correspond to high, medium, and low tourist demand scales, respectively. The study uncovers a self-organizing network structure, driven by congruences in internal tourist demand and variances in external tourist experiences. Functionally, there is a directed continuum of cooperation prospects among these communities. The core community, characterized by significant tourist demand, acts as a catalyst, boosting demand for other attractions. The intermediary community, central in the network, links the core and periphery, enhancing cooperative ties and influence. Peripheral attractions, representing latent growth areas within the destination matrix, benefit from associations with the core and intermediary communities. Our findings provide vital insights into the dynamics, systemic characteristics, and fundamental mechanisms of potential cooperation networks among tourist attractions. They enable tourism management organizations to employ our analytical framework for real-time monitoring of tourism demand and flow trends. Additionally, the study guides the macro-control of tourism flows based on the tourism network, thereby improving the tourist experience and promoting coordinated development among inter-regional tourist attractions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.